Computer Algebra, Theory and Practice

Arjeh M. Cohen

Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands
and
Mathematical Institute, State University of Utrecht
P.O. Box 80010, 3508 TA Utrecht, The Netherlands

1. INTRODUCTION

The space and time capacities of modern computers (work stations) do not
only allow for numerical arithmetic, polynomial arithmetic, the finding of exact
solutions of (differential) equations, differentiation and integration, but also for
computations in user-defined abstract algebraic structures (like groups, rings
and algebras) and computing with elements thereof. I expect that software
packages realizing these possibilities will become quite common in the near
future. The discipline of mathematics and computer science concerned with the
development, use and theoretic background of these packages, is referred to as
computer algebra.

Graphical facilities also become widely available: it will be possible for work
station users to construct, rotate and deform graphs, polytopes and surfaces at
will. A suitable analogue for activities in this direction might be computer
geometry (the name computational geometry is more common); at any rate I
will pay no attention to them in the rest of this paper.

In a way, it is no surprise that large portions of algebra can be ‘computer-
ised’. For, algebra being the study of operations on sets (cf. [11]), it is possible
to examine an algebraic structure on computer provided the elements of the set
underlying the structure can be exactly represented and the operations can be
described by means of algorithms.

Research in computer algebra addresses (at least) three issues: Firstly, given
a structure (e.g. an algebra, ring, semi-group) and a problem related to that
structure (for instance: does there exist a unit?), determine whether there exists
an algorithm to solve that problem; and if so, give one. Secondly, in the cases
where it is clear that an algorithm exists, compare it with other ones, prove or
disprove that there are faster ones, that there are alternative ones using less
memory; these questions have been studied for about two decades under the

216 Arjeh M. Cohen

name of ‘complexity theory’. Thirdly: what can be achieved with practical
implementations?

These three issues cover the whole range from abstract theory to technologi-
cal practice. Below, in Section 8, I will pay little attention to the third issue
and, in Section 7, even less to the second one. 1 will deal with the first (most
theoretical) issue in Sections 3-6, thereby specifying the algebraic structures to
groups and polynomial rings, and the problem to the so-called ‘word problem’.
The main theme is that this classical theoretic setting is quite relevant to ques-
tions of everyday practice.

However, before starting the treatment of these three issues, I will present an
example of how a computer algebra package can be used to perform straight-
forward computations with polynomials (some other examples appeared in [3]).

2. ON THE USAGE OF A COMPUTER ALGEBRA PACKAGE—AN EXAMPLE

Dealing with representations of Lie groups, I wanted to carry out some com-
putations of the following nature. Given a polynomial map a,b+F(a,b) deter-
mine the rational function f(x,y) in x,y whose formal power series expansion
around (x,y)=(0,0) satisfies

fxp)= 3 F(ab)x®. (1)

ab=0

The paramount polynomials F for which I would like to know the answer were
A2, B2 and G2 given by

y 2(a,b)=—;—(a)b +1)a +b +2),
B2(a,b)=—31—'-(a 1) b +1)a +b +2)2a +b +3) and

GZ(a,b)=—SlT(a +1)(b +1)(a +b +2)(a +2b +3)a + 3b +4)(2a + 3b +5).

The readers interested in Lie groups might recognise these expressions as the
dimensions of representations of Lie groups of the type suggested by the nota-
tion, cf. [8, p. 140]. Realising that the identity

c!
——=>(@+1) - (a+tc)x? 2
TS 2@t @) @)
can be used to break F down to a polynomial G of smaller degree with control
over the rational function for the difference F —G, 1 wrote the following

Pascal-like program recursively defining the function mkrat. This program is
suitable for use in MAPLET,

t MAPLE is the name of a computer algebra package developed in Waterloo.

Computer algebra, theory and practice 217

readlib(coeftayl):

mkrat := proc(F)

local adeg,bdeg,corr,i,antw,r,d,tt;

tt := expand(F);

adeg := degree(tt,a):

if tt=0 then antw := 0
else
d := expand(coeftayl(tt,a=0,adeg));
bdeg := degree(d,b):
d := coeftayl(d,b=0,bdeg);
corr := 1;
for i to adeg do corr :
for i to bdeg do corr :
corr := corr#*d;
tt := tt-corr;
r:=((adeg!)*(bdeg!)*d/(((1-y X bdeg+1))*((1-xXadeg+1))))
antw := mkrat(tt)+r

fi;

antw

end:

= corr*(a+i) od;
= corr*(b+i) od;

The first line of this program reads in the library-function coeftayl, which,
upon the call coeftayl(tt,a=0,adeg), returns the coefficient of a**% in
the Taylor series expansion of 7 with respect to a around 0. Next, the func-
tion mkrat is defined, whose sole argument is a polynomial F in a and b. The
recursive part of the definition is in the end: the polynomial corr with the same
highest degree term d a®*8p%¥¢ as F (beforehand, by use of expand, F has
been written as a sum of terms) plays the role of the expression in (2) above; it
corresponds to the rational function r and satisfies mkrat(F)=
mkrat (F —corr)—+r.

Now, imagine the above program has been written in file m. The following
MAPLE session then leads to the result that I was after:

I*/ | McMaple V4.0 --- January 1987
I\ 1 /1_. Licensed by Univ of Waterloo
\ MAPLE [/ Dept ZW, CWI, Amsterdam
< > Do not redistribute

| For on-line help, type help();

>
read m: # the function mkrat is read in from file m#

218 Arjeh M. Cohen

>
A2 := (a+1)*(b+1)*(a+b+2)/2: # the example A2 above #
>
B2 := (a+1)*(b+1)*(a+b+2)*(2*%a+tb+3)/6:
>
G2 := (a+1)*(b+1)*(a+b+2)*(a+2*b+3)*(a+3*xb+4)*(2*%a+3%b+5)/120:
>
mkrat(A2);
1 1 1
— + +

(1-y)2(1-x)? (1—y>3(1—x)? (1—y)3(1-x)?

>

a2 := normal("); #brings theprecedingresultinnormal form#

_ —14+yx
(—14y)3(—=1+x)3

a2 :=

>
b2 := normal(mkrat(B2));
#the same as for A2, but now as a compound statement#

1+x—4yx+yix+y?x?

b2 : =
(—1+y) (—=1+x)4
>
g2 := normal(mkrat(G2)); #same for G2 #
g2 :=

(1+x+8y+8y%x—6y*x+15y3x%—26y3x3+8y3x* +y*x3
+y*x* —26yx —41y2x +78y?x% +8y2 +y3 +15yx% — 6y x>
+yx*—41y%x3)

/CC=1+y)8(—=1+x)%)

The result can be easily checked by substituting values for a and b. Here is a
function suitable for the check of a single coefficient:

poll := proc(f,a,b)
coeftayl(coeftayl(f,x=0 ,a) ,y=0,b)
end:

Thus the test

Computer algebra, theory and practice 219

poll(g2,1,1);

>
subs(a=1,b=1,G6G2) ;
64

verifies that indeed the coefficient of xy in the power series expansion of g2
equals G2(1,1). (Of course, the package knows about for loops, so that many
more values can be checked with hardly more effort.)

The gist of the above example is that, in a high level programming language
like MAPLE, mathematical objects (here: rational functions) are incorporated
in such a way that mathematicians can carry out standard computations with
these objects in a quite natural and much more efficient way than by pad and
pencil.

3. UNDECIDABILITY

As mentioned above, an important issue in computer algebra is: Given a ques-
tion one could ask of any algebraic structure of given type (say, group), does
there exist a method to find the answer? Much attention has been paid to this
topic, long before the name computer algebra became widely accepted. See
the Russian encyclopeadia [11] for a short introduction. The (major) part of
the theory of algorithms that is based on Church’s Thesis points out a specific,
natural class @ of algorithms. This class can be defined in various ways, for
instance by use of Turing machines. The notions (un)solvable and (unjdecidable
for a collection % of problems are then defined as the (non-)existence of an
algorithm in ¢ that, when applied to a problem from %, gives the right answer.
For example, consider the problem b7,: ‘Given a Turing machine T and an
input word w that can be read by T, does T terminate when w is fed to it?".
Here termination stands for stopping after a finite number of steps. Then
{br,,|T a Turing machine, w an input word for T} is a standard example of an
undecidable collection, called the Halting Problem. There even exist particular
machines T for which the collection {b7,, | w an input word for T} is undecid-
able.

Naturally, algebra too has its unsolvable problems. Here, like in daily life,
the word ‘problem’ is often used to refer to a class of problems. A very funda-
mental one is the word problem in group theory.

There are three basic ways to present a group: as a permutation group, as a
matrix group, or by means of generators and relations. Here, we shall work
with the latter. See [12] or [13] for an extensive treatment. Let X be an
abstract set. The free monoid on X is the set 9 of all words in the alphabet X
(including the empty word ¢), together with the multiplication coming from
concatenation. Such a free monoid can be realized on a computer without any
problem: it is nothing but the set of words over the alphabet X. The idea
behind representing other objects rests on the fact that any monoid on |X| gen-
erators can be obtained as a quotient (i.e., a homomorphic image) of IM.

220 Arjeh M. Cohen

A notion similar to ‘free monoid’ exists for groups. Let X ™! stand for the
set of formal elements {x ~'|xeX} and stipulate (x "!)"'=x. The free group
on X is the group F whose elements are equivalence classes of the free monoid
M on X[1X~' with respect to the congruence relation = generated by
xx '=e (for all xeX|UX™'), so that uxx "'v=uv (for all uvedN,
xeX[1X™"). The product of two elements [u], [v] of F is [uv], and the
inverse of [x| - - x,] is [x5,' - - - x; '] (for all x,,...,x,€X1X~!). Thus, F
is the image of the natural monoid morphism um[u] (u€dM). In other words,
F is the group generated by X in which no relations occur. Each element of F
corresponds to a unique simple word in 9, that is a word in which no sub-
string of the shape x x ™! or x ~'x occurs for x&X. There is an algorithm for
reducing an arbitrary word to a simple word by successive deletions of
occurrences of x x ' or x “'x. As a consequence, we can effectively identify F
with the subset of 9N consisting of all simple words. Moreover, the problem
‘given two words u and v in 9%, decide whether [u]=[v] (read: the collection
of problems...) is solvable.

Let G be a group. A presentation (X,R) for G is an abstract set X (of genera-
tors) together with a set R (of relations) of pairs of words in X LI X ™', usually
written in the form

Xy Xm =P Y

where x;,y; e X1 X ~! for each i,j, with the property that G is isomorphic with
the quotient F/N of the free group F on X (viewed as the subset of I of sim-
ple words), by the smallest normal subgroup N containing R (viewed as the set
of elements x| - - - x,,p, ' -+ - yi ! of F for each of the relations of R).

Suppose G has presentation (X,R). Then, up to isomorphism, we may take
G=F/N, with F and N as above. By the above, an element of G can be
presented on a computer by a (simple) word over the alphabet X || X ~1. The
word problem for G, or rather (X,R), is the collection of problems: given two
words u and v over X [1X !, does [u]N =[v]N hold?

As we have seen above, the word problem for F is solvable. According to
the Boone-Novikov Theorem there are groups for which the word problem is
unsolvable. Below is an instance of this result in a relatively simple shape
(much simpler than the original examples!). It is due to Collins [5] who used a
method of Borisov to turn an unsolvable semi-group presentation into an
unsolvable group presentation.

For x,y €G, the commutator xy x "'y ™!

of x and y is denoted by [x,y].
THEOREM (Boone-Novikov; cf. [5]). There is no algorithm that solves the word
problem for the group presentation

generators : a,b,c,d,ep,q,r,t,k;

and relations : [a,p|=[bpl=[c.,p]=[dp)=[e.,p]1=p°.
[q“l,a_]]Z[q",b"]=[q",c"']=[q"l,d‘1]=[q_l,e"]=q9,
la.r]=[br]=ler]=ldr]=[er]=1,

Computer algebra, theory and practice 221

pacqr=rpcagq,p*adq’r=rp>daq® p’bcq’r=rpchq’,
pibdqg*r=rp*dbq®, p’ceq’r=rpcag® pdeqér=rptedb q°,
pledeq’r=rp’cdceq’, p¥ca’q®r=rpiaiq?,

p’d a’¢’r=rp® a®q® ka1t =a"1a’k,
Lpl=lnql=lkpl=lkq]=1.

The proof is based on a reduction to the semi-group from which this group
has been built. Proofs of unsolvability of the word problem for semigroups
can be given by reduction to the Halting Problem for Turing machines.

4. COSET ENUMERATION FOR GROUPS

The previous section shows that there are limits to the possibilities of analysing

groups presented by generators and relations. Nonetheless there are algorithms

providing satisfactory results in many cases. One of these is the so-called

Todd-Coxeter algorithm, which takes as input a presentation for G and a set of

generators for a subgroup H, and tries to construct the permutation represen-

tation H\ G of G on the collection of all cosets Hg (ge€G) of H in G. We
recall that the permutation representation of G on H \ G is the morphism from

the group G to the group of permutations of H \ G given by x> (Hg—Hg x).

Let G be a group presented by means of a set X of generators and a set R of
relations. Furthermore, let w,...,w, be a collection of words over the alphabet
XUX™' and let H be the subgroup of G generated by the elements
represented by the words wy,...,w,. The Cayley graph of G with respect to
(X,R) and w,...,w, is the graph whose vertex set is H \ G and whose edges are
directed and labelled with elements from X: an edge labelled x € X goes from
Hg to Hg' if and only if Hgx =Hg'.

The Todd-Coxeter algorithm attempts to construct the Cayley graph starting
from the vertex H, which gets the name 1. See [13] for a thorough description
of the method. In short, for each vertex drawn and each generator x € X, the
edges labelled x emanating from and ending in that vertex are drawn. If it is
not (immediately) clear where for instance an edge with a given starting vertex
ends, the end vertex will be a newly introduced vertex. The relations however
force vertices to coincide every so often. So, after the creation of sufficiently
many new vertices, a check on vertex collapse should be run. Three kinds of
collapses are to be taken into account:

(i) If iis a vertex from which x € X points towards both j and k, while j <k,
then k is identified with j (for x, being a permutation of H \ G, can send i
to only one vertex of I'; this vertex will be denoted by i x). The same rule
applies to two edges both labelled x and ending in i (yielding a collapse of
vertices i x ~1).

@) If x; ---x,=y;---y,eR and i is a vertex, then ix; - - - x, coincides
with I_yl T Yse
(i) If w,;=x,---x,, then 1x, ---x,=1 (because w,ecH and 1=H imply

1w, =H=1).

222 Arjeh M. Cohen

If no more collapses occur and all edges emanating and ending at newly
created vertices are drawn, then the Cayley graph of G with respect to (X,R)
and wy,...,w, has been found. If the Cayley graph is infinite, we cannot expect
the algorithm to terminate. In this light, the following theorem is best possi-
ble.

THEOREM (Mendelsohn, cf. [13]). If the index |H \ G| of H in G is finite, then
the Todd-Coxeter Algorithm terminates.

From a practical point of view, it would be useful to know how long it would
take in terms of the input and/or size of G\ H. However, very little is known
about the time it takes to terminate.

EXAMPLES

(i) The group G with presentation (X,R) where X= {x,y,z} and R=
{x2 =y2 =z'= 1,(xy)3 =(xz)? =(y)= 1}. In constructing the Cayley
graph we start with the vertex corresponding to the subgroup H generated
by y and z. Leaving out the ‘loops’, i.e., edges whose end and starting ver-
tices coincide, we get

X y z Y x
oo (—)o{(—ro{—ro{(—)o
where H is an end vertex.

(i) Collins’ group. Todd-Coxeter applied to the group presentation in the
Boone-Novikov Theorem as formulated in Section 3 and the words
p.q.r.t,k gives a single coset; this means that each of a,b,c,d,e can be
expressed in terms of p,q,r,t,k.

(iii) The Weyl group of type Eg. Let W be the Weyl group of type Eg. That is,
W has the presentation with generators ry,...,rg and relations visualised
by the Dynkin diagram of type Ej:

2
1 3 4 5 6 7 8

The relations are to be read from the diagram by means of the rules: (r,~rj-)3 =1
if {i,j} is an (unlabelled) edge of the diagram and (r,-rj)2 =1 otherwise (also if
i=j). We shall frequently write i instead of r; (1<<i=<<8). We select the words
2,3,4,5,6,7,8,w ~'8w where w =765432415635276145341324567853421345678,
and let D denote the subgroup of W generated by them (read: their images in
W). From the theory of Weyl groups it can be derived that D is isomorphic to
the Weyl group of type Dg. (The argument I have in mind is that the genera-
tors of D are the reflections with roots a,,as,...,a5,09, where ag is the longest
root.) At any rate, D has the presentation with generators 2,3,4,5,6,7,8,0,

Computer algebra, theory and practice 223

where 0 stands for w ~'8w, given by the diagram below in the same manner as
for W above:

0
2 3 4 5 6 7 8

As a permutation of D\ W, the so-called Coxeter element t =14683257 con-
sists of 9 cycles of length 15. Write ¢=134354365768 and d=
134254316542347. The Todd-Coxeter algorithm, as implemented in e.g. CAY-
LEY' and a little extra work, yield that

Y={l,c,ct,c3,c% ¢’ dd?d*}{(1'|0<i<14)

is a full set of coset representatives of D in W, that is,

w=I1by.
yeY

5. KNUTH-BENDIX

In order to study an algebraic structure 4 by means of a computer we need to
find an effective way of representing its elements. The general strategy is to
consider A as the quotient of an object 91 whose elements can easily be
represented on a computer. For instance, if 9N is the free monoid on the finite
set (alphabet) X and we have a surjective morphism ¢: M—A, an element a €4
will then be represented by any we¢ ™ '(a). We have seen instances (where A is
a group) of this principle in the previous section, and we shall see another in
the next one (where 4 is a quotient ring and 9N a polynomial ring, which has
again the property that its elements can be easily represented on computer).

In this section we shall take 4 to be a group G with presentation (X,R)
(both X and R finite). For convenience, we assume that X is closed under tak-
ing inverses (that is, x "' € X whenever x €, in which case (x 7!) 7' =x).

In this and the following section, we shall concentrate on a method to solve
the word problem for 4 which, in a very general form is attributed to Knuth &
Bendix. In [9] and [12] more elaborate introductions to the subject can be
found than the one given here.

In order to compare elements of N, we introduce a linear ordering < on I
refining the relation ‘|’ (that is ‘is a divisor of’). For all m,m’,m"”,neM we
require
(1) if ms%l then 1<m;

(i) if m’<m’” then mm’'n<<mm''n.

+ CAYLEY is a software package for group theoretic computations developed by J.J. Cannon in
Sydney.

224 Arjeh M. Cohen

A linear ordering with these properties is called a reduction ordering (in other
literature also admissible). The total degree ordering (first according to total
degree, then lexicographically) is an example. The ordering is well founded.
That means that each decreasing sequence terminates (again meaning: stops
after finitely many steps). Now view each of the relations

X1 Xp=y1 " ym€R, if necessary, rewritten so as to obtain
X1 Xp>>Yy " Vm, &S an elementary rewrite rule
X170 Xy=Y 0 Yme

The word problem can be conveniently reformulated by use of this ordering.
A rewrite rule has the form umv=um’v with m=m’eR and m>m’. By
definition, two words w,w’ €9 correspond to the same element of G if w’ can
obtained from w by a sequence of rewrite rules and their inverses (an inverse
rewrite rule is a replacement of the shape umv=um’v with m=m’eR and
um’v=umv a rewrite rule). Given we&9M, determining whether w represents
the identity in G, could be an impossibly hard task because it is not clear how
far ‘up’ with respect to the ordering (using inverse rewrite rules) one has to go
before the word collapses to e with rewrite rules. We say that w reduces to w’,
notation w=>"w’, if there is a sequence of rewrite rules that, when successively
applied to w, yields w’.

Each subset of 9 has a unique smallest element with regard to <. So if we
can find an algorithm that, upon input w €91, returns the smallest word of the
subset consisting of all words representing the same element of G as w, this
algorithm will solve the word problem for (X,R). The Knuth-Bendix Algorithm,
when applied to (X,R), attempts to create a new set R’ of relations with the
same quotient group G, but with the additional property that, if wu,v,w are
words in 9 such that both u="v and u="w, then there is x €9 with v=s"x
and w="x. This property is called confluence. It will be clear that by use of
R’ every word w can be rewritten to a unique smallest word wg, and that wy is
the unique smallest word in 9T corresponding to the same element of G as w.
Thus, if the Knuth-Bendix algorithm succeeds, the word problem for the
presentation (X, R) is solvable.

EXAMPLES

(i) Example (i) of Section 4 revisited. The following system of 10 rewrite rules
for the presentation (X,R) of that example is confluent with regard to the total
degree-reduction ordering satisfying x <y <z.

x2=>1;y2=1; zz=~1;

-1

X =—>x;y“l !

=y;z =z,
VXYSXY X, IXDXZ,ZYZy=yzyz;
IYXZyX=DyZIyXZ).

(i) Coxeter groups. If (m;;))<; <, is an nXn matrix with m; =1 and m;=m

: I
for all i,j, then the Coxeter system over (m;;)1<ij<n 1s the group presentation

Computer algebra, theory and practice 225

with generators ry,...,r, and relations (r;r))™ =1 for all i,je(l,...,n}.
(Examples (i) and (iii) of Section 4 are Coxeter systems.) The corresponding
group G is called a Coxeter group. Tits has given a nice set of rewrite rules for
these systems that is neither confluent nor obeys a reduction ordering, but still
leads to an algorithm for determining whether two words represent the same
element of G. Let 9N be the free monoid over 7|, ... ,r, and consider the
rewrite rules

riri=1 (1<i<n), @)
r,'rjri st =>rjr,'rj M (1<1,]<n) bOlh Sides Of length m,l (2)
As r; ' =r,, there is no need for additional formal symbols r; ' edM. Tits has

shown that the word problem ‘does w represent 1 in W7 is solvable by means
of the algorithm: continue to apply rewrite rules (2) till either two consecutive
occurrences of the same generators appear (so that r;r; is a subword for some
i) or no more new words of the same length can be obtained by means of (2).
In the former case, remove r;r; from the word and iterate the procedure from
the beginning with the newly obtained word (the length has decreased, so this
case occurs a finite number of times). In the latter case stop: the answer is yes
if the word is empty and no otherwise.

Better algorithms are obtained by means of a presentation of G as a matrix
group. Nevertheless, an interesting, as yet unsolved problem (1989) is to find a
confluent (possibly infinite) set of rewrite rules for any Coxeter group.

Instead of discussing the Knuth-Bendix algorithm in full generality, I will
switch to a famous instance where the algorithm always succeeds: quotients of
polynomial rings.

6. GROBNER BASES

Let R be a field. For most of the remarks below on solvability to make sense,
it is needed that R itself can be effectively presented on a computer, but we
shall not worry about that here. (The problems would dissolve if we were to
take for R the field of rational numbers.) Put T=R[X,,...,X,]—the polyno-
mial ring with indeterminates X,,...,X,. The ring T plays a similar role for
rings as the free group F for groups. In particular, we imagine the elements of
T to be representable on a computer (each element of T having a unique
presentation) and use it to study its quotient rings. To this end we specify a
set B of elements of T (polynomials over R in X,..., X,,, and denote by (B) the
ideal of T generated by B; the elements f and f’ of T represent the same ele-
ment of the quotient ring S=T/(B) if (and only if) f+(B)=f"+(B). The
word problem for S (with respect to B) is: Given B and two polynomials f,f’ in
T, does f= f'mod (B) hold (equivalently, does f+(B)=f"+(B) hold in S)?

A monomial in T is an element of T of shape Xi' - - - X), often abbreviated
to X, where a stands for (a,,...,a,)eN". By 9t we denote the set of all
monomials. Thus, m = X% &N can be identified with the element a of N", and
we shall do so whenever convenient. An element f€T can be uniquely written

226 Arjeh M. Cohen

=3 S Now f,,m is called a term of f.
me-

We choose a reduction ordering << on 9 (i.e., an ordering satisfying the
properties (i) and (ii) of Section 5). The lexicografical ordering is an example.
The highest monomial occurring in feT is denoted by Imy (short for leading
monomial); thus

Im:=max My, where My= {meMf,70}.

The coefficient of this monomial in f is denoted by lcy.

When confronted with feT, we want a canonical representative of
f+(B)eT/(B). This representative g should have minimal /m,. If, for f.geT
there exist m €M, and b€ B with

m m
Imp|m and g:f—%;b—-l—’;;b

(so that g,, =0), then we write f=pgg, or, more succinctly, f=g. Observe that g
is smaller than fin the sense that ;>N (with respect to a natural ordering
on subsets induced by <) and that g +(B)=f +(B). Let g,heT. We say that
g reduces 1o ot can be rewritten 10 h modulo B, notation g="h, if there is a
(possibly trivial) sequence of reductions starting with g and ending with A,
Now, g is called a normal form with respect to B and < if there is no heT
with g=>ph. Furthermore, h €T is called a normal form of geT if A is in nor-
mal form and g="h. Now the notion of Grébner basis can be introduced. B
is called Grobner basis with respect to << if each element of 7 has a unique
normal form with respect to B.

EXAMPLE. A normal form need not be unique. Take T=Q[X,Y] and B=
{X*Y—1, XY?—1}. Then X and Y are both normal forms of X?Y? with
respect to the lexicografical ordering. The element X —Y =Y (X 2y —1)—
X(XY?~—1)e(B) is in normal form but cannot be rewritten to 0.

The ordering > induces a well-founded ordering on the collection of subsets
of M (an easy consequence of the fact that > on N is well founded). Conse-
quently, there is an algorithm normal (B,f) reducing any fe U to a normal
form with respect to B: Find beB and meﬂKf such that /my|m; if b,m are
found, take

f:=normal(B, f— f,,m(Imylcy)~ 'b)

and invoke recursion; if b and m cannot be found, fis in normal form.

THEOREM (Grobner bases characterisation, cf. [2]). Suppose << is a reduction

ordering on the set N of monomials in T. The following statements concerning a

finite subset B of T are equivalent.

(1) B is a Grébner basis,

(ii) for all f,g.heT with h=spf and h=spg, there exists k€T with f=gk and
g=pk;

Computer algebra, theory and practice 227

(iii) each element of (B) reduces to 0;
(iv) 0 is the unique normal form of each element in B;
) {Imgfe(B)}={tImy|beB,reM}.

These characterisations are not effective: they do not show how—in a finite
number of steps—it can be checked whether a given subset B of T is a
Grobner basis. To reach that goal, we need the following concept. The S-
polynomial of two polynomials f,g €T, notation S(f.g), is

0 if f=0org=0
S(f.g)= =14, -1 :
lem(/m 1, Img)(lcglm o f—le flmg "g) otherwise

THEOREM (Effective characterisation of Grobner bases). Ler < be a reduction
ordering on the set of monomials of the polynomial ring T. The following are
equivalent:

(1) B is a Grobner basis;

(i) if b,b’eB then O is a normal form of S (b,b’).

A Grobner basis of a (finitely generated) ideal / of T=R[X,,...,X,] enables us
to uniquely represent elements 7/1 by elements of T. But it also helps solving
quite a few other problems: for instance in deciding whether two subsets gen-
erate the same ideal. There is no bijective correspondence between ideals and
Grobner bases.

EXAMPLE (Several Grobner bases with respect to the same orderin§ and gen-
erating the same ideal). Take T=R[X,Y], and BO=(X—Y'"¥" y’—1}.
Then I=(B") is independent of ieN. Each B is a Grébner basis of 1 with

respect to the lexicografical ordering on 9N with X>Y:
S(X_ Yl+3i, Y3_ 1) — _(X_ Yl+3(i+l))=33“‘(X"‘ Y1+3(i+l))__(X__ Y1+3i)
= Y"1 = Y?)= 0.

A slight refinement rids us of this ambiguity: let I be an ideal of 7. We call B
a reduced Grobner basis of I if it is a Grobner basis and if each beB has Ic, =1
and is in normal form with respect to B\ {b}. Then (cf. [2]) I has a unique
reduced Grobner basis B. This basis is a minimal Grébner basis of 7 in the
sense that no subset of B is also a Grobner basis of I. Moreover,
|(Imy|b<B)|=|B].

The above theorem also provides an algorithm for finding Grobner bases.

ALGORITHM GBAsIS: Given B return a Grobner basis of (B)
P:={{b,b"}|b,b’eB};
while Pz~ O
do choose {b,b’}€P;
P:=P\ {{bb'}};

228 Arjeh M. Cohen

c:=normal(B,S (b,b"));

if ¢%40

then P:=PU{{b,c}|beB};
B:=BU{c};

fi

od;

return B

There is a paucity of applications of the Grobner basis theory. We only
mention

THEOREM (A. van Essen [7]). Let f: R"—R" be a polynomial mapping given by
FX)=(f1(X),....fo(X)), with f(X)ET for each i. Choose a reduction ordering on
the monoid of monomials in X=(X,...X,) and Y=(Y,,..Y,) with
Y <Y< - <Y, <X <Xy<- <X, Write B={Y,—f(X)|I<i<n).
Then f is invertible in R[X] if and only if there exist g(Y) (1<i<n)eR[X.Y]
such that {X;—g(Y)|1<<i<n} is the reduced Gréobner basis of (B). If, moreover,
[is invertible then its inverse is given by Yis(g1(Y),....g.(Y)).

The practical performance of Grébner bases algorithms is rather limited: the
algorithms require a lot of space and time. Nevertheless, the algorithms are
(and should be) available in most general purpose computer algebra software
packages.

7. COMPLEXITY

So far, we have been looking at problems for which it is not clear at the outset
whether a solution can be found. For problems like multiplying two integers,
such questions are not even asked. There, the issue is to determine how fast
they can be multiplied. This is the domain of complexity theory; cf. [1] and
[10] for excellent introductions. Various results in this area, originating from
pure mathematics have been implemented on computers: fast (probabilistic)
primality tests and factorisations of integers, the Discrete Fourier Transform
for fast multiplication of polynomials, the so-called L(ower) U(pper-diagonal)
P(ermutation matrix)-decomposition for fast multiplication and inverting of
matrices see e.g. [4] for an introduction. According to my taste, complexity
theory is a fascinating subject as it often requires original and creative work to
come up with algorithms that are better than the known ones.

8. PRACTICE

Apart from the theoretic issues discussed so far, computer algebra also deals
with practical aspects like actually building a software package and making it
available for easy use to a large audience. Usually a compromise has to be
made between the two goals of having the ‘fastest implementation possible’

Computer algebra, theory and practice 229

and providing ‘user-friendliness’.

There are inspiring interactions between the actual building of packages and
theoretic problems. A good example is the algorithmic variant of classical
‘integration’. See [6] for this and other examples.

In the year 1989, at least two packages have been constructed in The Neth-
erlands. One of them is called FORM; it has been constructed by J. Ver-
maseren and specialises in fast computations with huge expressions of use to
high energy physicists and mathematicians, such as rational functions. In lim-
iting to a restricted area of mathematics, it is able to perform considerably
better than the big general purpose packages.

The other package is LiE. It has been developed at CWI to perform compu-
tations of Lie group and Weyl group theoretic nature. Simple complex Lie
group representations can be parametrised by vectors with non-negative
integer entries—the so-called dominant weights. For instance, for the Lie group
of all 3X3 matrices having determinant equal to 1, the dimension of the
representation belonging to dominant weight [a,b] amounts to the value
A2(a,b) of the polynomial A2 defined in Section 2. In LiE, a standard for-
mula, the so-called Weyl's Dimension Formula (cf. [8]) has been used to com-
pute these numbers. The rational generating function a2 of Section 2 provides
a more compact way to store the map

X,y > A2ab) xyb.
a,b =0

Now, on the one hand, it is known that many more functions than the dimen-
sion have rational generating functions (examples being tensor product decom-
positions, ‘branchings’, etc.), on the other hand, the only algorithms known to
evaluate these functions are rather space and time consuming. Therefore, for a
given Lie group, the question arises, whether there is an effectively computable
bound on the number of values that have to be computed for the function in
question in order to be able to determine the corresponding rational generating
function. For, once it has been found, more values of the function can be
computed by mere polynomial arithmetic. Thus, a practical observation raises
a question of highly theoretical nature (involving the homology of certain rings
related to the Lie group).

We finish with an example of the other way around, where the theory (of
Weyl groups) provides tricks to improve standard algorithms in a software
package (LiE). For the sake of exposition, we restrict attention to the complex
simple Lie group G of type Eg. Each simple Lie group corresponds to a Weyl
group; the one for G is the Weyl group W of type Eg given in Example (ii) of
Section 4. The Weyl group W can be represented as a set of invertible square
matrices of size 8 with integer entries, so that it transforms vectors with
integral entries of size 8. An orbit of W on the vector space is a set of the
form {wv|we W} for some vector v. Standard methods to compute the trace of
a diagonisable element in G require enumerating all elements of orbits of W.
But there are orbits of 696,729,600 vectors, so enumeration should not involve
storing all orbit elements. Since the subgroup D as in Example (ii) of Section

230 Arjeh M. Cohen

4 is monomial (that is, after a suitable change of bases, all matrices have
exactly one non-zero entry in each column and in each row), it is straightfor-
ward to write an algorithm that enumerates all vectors of the orbit {wv|lweD}
for any given vector v but does not store more than two vectors. Now using
the coset representatives of Example (i1) of Section 4, this algorithm for D
could be extended to a relatively fast algorithm for W, enumerating the ele-
ments of any orbit of W in a very limited amount of space.

REFERENCES

1. A. BOrODIN, 1. MONRO (1975). The Computational Complexity of Alge-
braic and Numeric Problems, Elsevier, Amsterdam.

2. B. BUCHBERGER (1985). Grobner bases: an algorithmic method in poly-
nomial ideal theory. N.K. Bost (ed.). Multidimensional System Theory,
Reidel, Dordrecht, 184-232.

3. ArJEH M. CoHEN (1988). Mathematical formula manipulation from a
user’s point of view. CWI Quarterly 1(3), 53-63.

4. ARrRJEH M. COHEN, BERT RUITENBURG (1989). Algebra and Compurer Al-
gorithms, lecture notes.

5. D. CoLLINS (1989). Unsolvable Decision Problems, a letter, 1-8.

6. J.H. DAVENPORT, Y. SIRET, E. TOURNIER (1988). Computer Algebra, Sys-
tems and Algorithms for Algebraic Computation, Acad. Press, London.

7. A. VAN ESSEN (1986). A Criterion to Deduce if a Polynomial Map is Inver-
tible and to Compute its Inverse, Report Kath. Univ. Nijmegen, 1-6.

8. J.E. HUuMPHREYS (1972). Introduction to Lie Algebras and Representation
Theory, Springer, New York.

9. J.W. Krop, A. MIDDELDORP (1988). An introduction to Knuth-Bendix
Completion. CWI Quarterly 1(3), 31-52.

10. D.E. KNutH (1973). The Art of Computer Programming Vol 3, Addison-
Wesley, Reading MA.

11. M. HAZEWINKEL (1988). Encyclopaedia of Mathematics, Vol 1 A-B, An up-
dated and annotated translation of the Soviet ‘Mathematical Encyclopaedia’,
Reidel, Dordrecht.

12. C.C. Sims (1989). Computation with Finitely Presented Groups, preliminary
draft of a book.

13. M. Suzuxki1 (1982). Group Theory I, Springer Verlag, Berlin.

